
Statistical
Inconspicuousness

YOUR EFFORTS TO
BLEND IN ARE MAKING
YOU STAND OUT…

Art by Dan Mumford

// Brandon McGrath

// Michael Ranaldo

// Steelcon 2024

https://www.dan-mumford.com/

$ whoami

❖ Brandon McGrath

❖ Red Teamer / Targeted Operations @ TrustedSec

❖ Developer @ pre.empt

❖ twitter.com/__mez0__

❖ Second time SteelCon Speaker

https://trustedsec.com/
https://pre.empt.blog/

$ whoami

❖ Michael Ranaldo

❖ Senior Security Consultant @ Trustmarque

❖ Developer @ pre.empt

❖ twitter.com/michaeljranaldo

❖ First time SteelCon Speaker

https://pre.empt.blog/

❖ Maelstrom series in 2022, focusing on implant development and detection

❖ Looking at the wider malware marketplace - “what is the statistically average binary”

❖ Thinking about incorporating ML to analyse this

❖ EMBER stood out as a heavily influential dataset for ML

❖ Some of the points of interest on a binary from this dataset as part of our analysis

$ Background

Hyrum S. Anderson, Phil Roth: EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models
Shay Banon: Welcome Endgame: Bringing Endpoint Security to the Elastic Stack

Brandon McGrath, Michael Ranaldo: Maelstrom #1: An Introduction
Brandon McGrath: From Chaos to Clarity: Organizing Data with Structured Formats

https://arxiv.org/abs/1804.04637
https://www.elastic.co/blog/endgame-joins-forces-with-elastic
https://pre.empt.blog/2023/maelstrom-1-an-introduction
https://trustedsec.com/blog/from-chaos-to-clarity-organizing-data-with-structured-formats

$ Research Goal

❖ This is a subset of a bigger goal we’ve been working on since Summer 2022

❖ Our research was focused on:

▪ Looking at binaries en mass

▪ Can we get a comprehensive list of as many samples as possible

▪ What are their commonalities when considering their “points of interest”

▪ What can we learn, both offensively and defensively, for building red team implants

❖ We will explain our terminology and data sources over the next slides!

$ Today’s Goal

❖ We are going to show some preliminary findings from our research

❖ Storytime: Three implants appear on the desk of a reverse engineer

❖ Using the points of interest from our research:

▪ What are common steps people take when writing malware to evade detection?

▪ How can these in turn make an implant stand out more?

▪ What improvements can be made to better the implant?

▪ What should defenders be aware of for the future?

▪ More of a vendor issue, maybe?

❖ We want to make you paranoid about every payload you ever write

Our Data, Definitions,
and Cast

Art by Dan Mumford

https://www.dan-mumford.com/

$ When you say “Implant”…

❑ Implant

❑ Loader

❖ Cradle

❖ Implant

❖ Beacon

❖ Packer

❖ Loader

❖ Dropper

❖ Demon

❖ Badger

Jong-Wouk Kim, Yang-Sae Moon, Mi-Jung Choi: An Efficient Multi-Step Framework for Malware Packing Identification
Arne Swinnen, Alaeddine Mesbahi: One packer to rule them all

implant

beacon

loader
demon dropper

packer

cradle

https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://arxiv.org/pdf/2208.08071
https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf

$ So just to be clear

Any.Run: Loader

https://any.run/malware-trends/loader

$ Types of binary

Malware Goodware Winware

$ Data Sources: Malware

❖ Sophos SOREL

❖ Malware Bazaar

❖ Didn’t scrape vx-underground out of respect for smelly

Sophos: Sophos Reversing Labs SOREL 20 million sample malware dataset
Abuse.ch: MalwareBazaar
VX Underground

https://ai.sophos.com/2020/12/14/sophos-reversinglabs-sorel-20-million-sample-malware-dataset/
https://bazaar.abuse.ch/
https://bazaar.abuse.ch/
https://vx-underground.org/

$ Data Sources: Malware

$ Data Sources: Goodware

❖ NIST Software Quality Group + HybridAnalysis

❖ Chocolatey

❖ winget – excluding anything published by Microsoft

❖ Ninite

❖ Also didn’t get historic chocolatey, just everything currently available at
the latest version

NIST: Current RDS Hash Sets
Hybrid Analysis
Chocolatey
Ninite

https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/nsrl-download/current-rds
https://www.hybrid-analysis.com/
https://chocolatey.org/
https://ninite.com/

$ Data Sources: Winware

❖ Windows 10

❖ Windows 11

❖ Windows Server 2022

❖ winget – filtering for just Microsoft in the ID

❖ Everything including Visual Studio and Office and all server roles and
optional features

Microsoft: Microsoft | Store
Wikipedia: Microsoft Windows

https://apps.microsoft.com/home
https://en.wikipedia.org/wiki/Microsoft_Windows

$ Sample

$ Data

❖ Goodware: 30,261

❖ Winware: 55,901

❖ Malware: 613,879

$ Our Cast

Meterpreter GitFUD Better*

Exploring

Art by Dan Mumford

https://www.dan-mumford.com/

$ Points of Interest

❖ Entropy

❖ File Size

❖ Imports

❖ Exports

❖ Code Signing

❖ Compiler

$ The task

❖ You’re on a red team

❖ Something something assumed breach

❖ You need a loader but you’re unsure

❖ So you go to Discord

❖ …

$ Solution 1: Encryption

❖ You’ve shoved shellcode into a binary

❖ Windows Defender didn’t like it

❖ You ask Discord

❖ …

❖ You AES256 encrypt it

❖ Mixed results

$ Solution 1: Entropy

❖ Using Shannon Entropy, we measured the total entropy of a file as well as per-section

❖ Even back in 2006, 80 to 90% of detected malware was found to use encryption or packing

❖ Old technique, but still works. Literally the oldest trick in the book.

Using Entropy Analysis to Find Encrypted and Packed Malware

https://ieeexplore.ieee.org/document/4140989

$ Entropy: Goodware

❖ Interquartile Range:

▪ 25%: 5.87

▪ 50% (mean): 6.30

▪ 75%: 6.54

$ Entropy: Winware

❖ Interquartile Range:

▪ 25%: 5.58

▪ 50% (mean): 6.16

▪ 75%: 6.50

$ Entropy: Malware

❖ Interquartile Range:

▪ 25%: 5.85

▪ 50% (mean): 6.60

▪ 75%: 7.24

$ Entropy: All together now!

$ Solution 1 (Bonus): File Size

❖ A natural progression from Entropy

❖ The size of the binary CAN have implications

❖ Bloating tools are double edged:

❖ Too large to scan

❖ Looks super weird

$ Solution 1 (Bonus): File Size

$ Solution 1 (Bonus): File Size

$ Solution 1 (Bonus): File Size

$ Solution 1 (Bonus): File Size

$ Solution 1 (Bonus): File Size

IQR (%) Malware (KB) Goodware (KB) Winware (KB)

25 88 40 40

50 212 100 112

75 940 424 360

$ Solution 1 (Bonus): File Size

$ Solution 1: Considerations

❖ Don’t put the high entropy blob inside the binary:

❖ Hinder Reverse Engineers

❖ Kill-switch

❖ Transform the blob into something like:

❖ UUID

❖ MAC

❖ IPV6

❖ SVG

❖ CSS

❖ PNG Bytes

pre.empt: Bluffy
Caleb Fenton: SentinelOne: Detecting Malware Pre-execution with Static Analysis and Machine Learning
Kurt Baker: CrowdStrike: 10 Malware Detection Techniques

https://pre.empt.blog/2022/bluffy-the-av-slayer
https://www.sentinelone.com/blog/detecting-malware-pre-execution-static-analysis-machine-learning/
https://www.sentinelone.com/blog/detecting-malware-pre-execution-static-analysis-machine-learning/
https://www.sentinelone.com/blog/detecting-malware-pre-execution-static-analysis-machine-learning/
https://www.crowdstrike.com/cybersecurity-101/malware/malware-detection/

$ Solution 2: Imports

❖ Sometimes it works, sometimes it doesn’t

❖ Back to Discord

❖ …

❖ Get called noob

❖ …

❖ “You should dynamically resolve WinAPI Functions”

$ Solution 2: Imports

$ Solution 2: Imports

❖ Common Injection:

❖ VirtualAlloc

❖ Memcpy

❖ VirtualProtect

❖ CreateThread

❖ WaitForSingleObject

malapi.io

https://malapi.io/

$ Solution 2: Imports

$ Solution 2: Imports

$ Solution 2: Considerations

❖ Resolve some functions and not others

❖ Fake some imports

❖ Add telemetry generation

$ Solution 2: Exports (bonus)

$ Solution 3: Code Signing

❖ So, you’ve fixed the imports and exports

❖ You’ve built your new implant

❖ Securely compiled, non-standard, etc.

❖ So, you add the final 20% of effort, the coup de grace, and implement
the special features people talk about on the walkthroughs

$ Signing

$ Signing

CA Malware
(%)

Goodware
(%)

Winware
(%)

$ Signing

$ Signing

$ Sections
Name Content

.bss Uninitialized data (free format)

.cormeta CLR metadata that indicates that the object file contains managed code

.data Initialized data (free format)

.debug$F Precompiled debug types (object only)

.debug$P Debug types (object only)

.drective Linker options

.edata Export tables

.idata Import tables

.idlsym Includes registered SEH (image only) to support IDL attributes. For information, see “IDL Attributes” in References at

the end of this topic.

.pdata Exception information

.rdata Read-only initialized data

.reloc Image relocations

.rsrc Resource directory

.sbss GP-relative uninitialized data (free format)

.sdata GP-relative initialized data (free format)

.srdata GP-relative read-only data (free format)

.sxdata Registered exception handler data (free format and x86/object only)

.text Executable code (free format)

.tls Thread-local storage (object only)

.tls$ Thread-local storage (object only)

.vsdata GP-relative initialized data (free format and for ARM, SH4, and Thumb architectures only)

.xdata Exception information (free format)

MSDN: PE Format

https://learn.microsoft.com/en-us/windows/win32/debug/pe-format

$ Compiler

❖ In our experience, compilers have changed the outcome of execution

❖ Compiling with MINGW:

❖ Caught

❖ Compiling with MSVC:

❖ Fine

❖ Compiling with CLANG:

❖ Mixed

$ Compiler

❖ This is a current limitation of the dataset

❖ Detect it Easy could be used to solve this problem

$ Compiler

$ Compiler

VB2019 paper: Rich Headers: leveraging this mysterious artifact of the PE format

❖ In 2020, ESET published Rich Headers: leveraging
this mysterious artifact of the PE format

❖ Rich Headers were released in VS 97 SP3

❖ Mostly undocumented

❖ Contains information about:

▪ Product Identifier

▪ Build Number

▪ And some other stuff

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-rich-headers-leveraging-mysterious-artifact-pe-format

$ Compiler
PE ‘Rich Headers’ were introduced with the
release of Visual Studio 97 SP3. Microsoft didn’t
announce that it had implemented such a feature
or give a reason for its introduction, and never
released any kind of documentation for it, so we
cannot really be sure about its original purpose,
but it seems that Microsoft simply wanted to have
some sort of development environment fingerprint
stored in the executables, or perhaps to help with
diagnostics and debugging. Regardless of the
original intent, the Rich Header has proved to be a

very valuable block of data for malware
researchers, where a few hundred bytes, when
interpreted correctly, can be used as a very strong
factor for attribution and detection.

$ Compiler

$ Compiler

Best Practices

Art by Dan Mumford

https://www.dan-mumford.com/

$ Implant Methodology

Consideration Example

Environmental Keying Domain name

Host Keying Hostname

External Keying IPV4 == Expected

Anti-Debug Something clever

Anti-VM \HKEY_CURRENT_USER\Software\VMware, Inc.*

Retrieve Payload Remotely HTTP/DNS

Loading Routine VirtualAlloc, VirtualProtect, etc.

Execution Routine CreateThread, Callbacks, etc.

Defensive Impairment ETW, AMSI, WFP, etc.

Post Execution Cleanup VirtualFree / DeleteFile, etc

PE Management Exports, entrypoints, icons, etc.

Binary Post-Processing Embed Imports, etc.

Key Colour

Optional

Preferred

Paranoia

Consideration Example

Environmental Keying Domain name

Host Keying Hostname

External Keying IPV4 == Expected

Anti-Debug Something clever

Anti-VM \HKEY_CURRENT_USER\Software\VMware, Inc.*

Retrieve Payload Remotely HTTP/DNS

Loading Routine VirtualAlloc, VirtualProtect, etc.

Execution Routine CreateThread, Callbacks, etc.

Defensive Impairment ETW, AMSI, WFP, etc.

Post Execution Cleanup VirtualFree / DeleteFile, etc

PE Management Exports, entrypoints, icons, etc.

Binary Post-Processing Embed Imports, etc.

Pre-load

load

Post-load

Post-compilation

Malware Evasion Techniques Part 2: Anti-VM Blog

Windows: Evasion techniques

$ Implant Methodology

https://www.deepinstinct.com/blog/malware-evasion-techniques-part-2-anti-vm-blog
https://www.deepinstinct.com/blog/malware-evasion-techniques-part-2-anti-vm-blog
https://www.deepinstinct.com/blog/malware-evasion-techniques-part-2-anti-vm-blog
https://evasions.checkpoint.com/src/Evasions/

Consideration Example

Environmental Keying Domain name

Host Keying Hostname

External Keying IPV4 == Expected

Anti-Debug Something clever

Anti-VM \HKEY_CURRENT_USER\Software\VMware, Inc.*

Retrieve Payload Remotely HTTP/DNS

Loading Routine VirtualAlloc, VirtualProtect, etc.

Execution Routine CreateThread, Callbacks, etc.

Defensive Impairment ETW, AMSI, WFP, etc.

Post Execution Cleanup VirtualFree / DeleteFile, etc

PE Management Exports, entrypoints, icons, etc.

Binary Post-Processing Embed Imports, signing, etc.

Entropy

File Size

Imports

Imports / Exports

Signing

Sections

$ Implant Methodology

$ Final thoughts

❖ Gold Standard:

❖ Pretend to be Windows

❖ You won’t be able to do this, so much to get right

❖ Trying to make this perfect, will create more variance, thus standing out

❖ Goodware is a lot better to aim for - most malware doesn’t even bother

❖ Doing a little, but not knowing why, and ending up as gitfud, is worse than just using well-
honed loader or even meterpreter when it comes to static points of interest

❖ This is not the case for runtime!

$ Final thoughts

❖ The statisiclyl average binary is

POI Goodware Winware Malware

Entropy

File Size

Imports

Exports

Signed TRUE TRUE FALSE

Compiler

$ Final thoughts
__iob_func

_amsg_exit

_CorDllMain

_initterm

_lock

_unlock

abort

calloc

free

fwrite

malloc

memcpy

memmove

memset

realloc

strchr

strcmp

strlen

strncmp

vfprintf

CharNextA

CoCreateInstance

CoInitialize

CoTaskMemFree

CoUninitialize

DestroyWindow

DispatchMessageA

GetKeyboardType

GetSystemMetrics

LoadStringA

MessageBoxA

OleInitialize

OleUninitialize

RegCloseKey

RegOpenKeyExA

RegQueryValueExA

SysAllocStringLen

SysFreeString

SysReAllocStringLen

VariantClear

$ Questions?

Thanks!
 Your efforts to blend in

are making you stand
out…

Art by Dan Mumford

https://www.dan-mumford.com/

	Introduction
	Slide 1: Statistical Inconspicuousness
	Slide 2: $ whoami
	Slide 3: $ whoami
	Slide 4: $ Background
	Slide 5: $ Research Goal
	Slide 6: $ Today’s Goal

	Definitions
	Slide 7: Our Data, Definitions, and Cast
	Slide 8: $ When you say “Implant”…
	Slide 9: $ So just to be clear
	Slide 10: $ Types of binary
	Slide 11: $ Data Sources: Malware
	Slide 12: $ Data Sources: Malware
	Slide 13: $ Data Sources: Goodware
	Slide 14: $ Data Sources: Winware
	Slide 15: $ Sample
	Slide 16: $ Data
	Slide 17: $ Our Cast

	Setup
	Slide 18: Exploring
	Slide 19: $ Points of Interest
	Slide 20: $ The task

	Solution 1
	Slide 21: $ Solution 1: Encryption
	Slide 22: $ Solution 1: Entropy
	Slide 23: $ Entropy: Goodware
	Slide 24: $ Entropy: Winware
	Slide 25: $ Entropy: Malware
	Slide 26: $ Entropy: All together now!
	Slide 27: $ Solution 1 (Bonus): File Size
	Slide 28: $ Solution 1 (Bonus): File Size
	Slide 29: $ Solution 1 (Bonus): File Size
	Slide 30: $ Solution 1 (Bonus): File Size
	Slide 31: $ Solution 1 (Bonus): File Size
	Slide 32: $ Solution 1 (Bonus): File Size
	Slide 33: $ Solution 1 (Bonus): File Size
	Slide 34: $ Solution 1: Considerations

	Solution 2
	Slide 35: $ Solution 2: Imports
	Slide 36: $ Solution 2: Imports
	Slide 37: $ Solution 2: Imports
	Slide 38: $ Solution 2: Imports
	Slide 39: $ Solution 2: Imports
	Slide 40: $ Solution 2: Considerations
	Slide 41: $ Solution 2: Exports (bonus)

	Solution 3
	Slide 42: $ Solution 3: Code Signing
	Slide 43: $ Signing
	Slide 44: $ Signing
	Slide 45
	Slide 46: $ Signing
	Slide 47: $ Signing

	Solution 4
	Slide 48: $ Sections

	Solution 5
	Slide 49: $ Compiler
	Slide 50: $ Compiler
	Slide 51: $ Compiler
	Slide 52: $ Compiler
	Slide 53: $ Compiler
	Slide 54: $ Compiler
	Slide 55: $ Compiler

	Best Practices
	Slide 56: Best Practices
	Slide 57: $ Implant Methodology
	Slide 58
	Slide 59

	Closing
	Slide 60: $ Final thoughts
	Slide 61: $ Final thoughts
	Slide 62: $ Final thoughts
	Slide 63: $ Questions?
	Slide 64

